
RBE 3001: Automated Object Sorting with a 4-DOF Arm Robot

Kevin Siegall, Robert Gunduz, and Melissa Kelly

Abstract— This lab report is the culmination of all of our
work in this class. We created a system that picks up and sorts
objects by color. In order to accomplish this task, computer
vision was implemented to recognize, locate, move to, pick
up, and sort the different objects. Since there were no specific
instructions on the approach for the different methods in this
lab, there was some trial and error when testing to see what
approach worked best for the robot.

I. INTRODUCTION

The purpose of Lab 5 was to utilize basic joint control,
forward kinematics, inverse kinematics, velocity kinematics,
and trajectory planning to create a robotic system to pick
up and sort various objects. This system would include
recognition and location of the objects, and move to, pick
up, and then sort the different objects by color. The first step
in this lab was setting up the given camera and calibrating
it to set up the workspace. This calibration included fixing
the fish-eye-lens distortion and performing both intrinsic and
extrinsic calibration. Then, image processing was used to
implement the classification and detection of the centroid
of solid-colored, spherical objects. Once the detection of
the object was completed, color masks were created to
differentiate the objects by color, with the intent of later
sorting the objects based on their color. The color masks
were created using HSV values. When localizing each of the
objects in the workspace, it was important to have the proper
height of the camera. The centroid and radius of the objects
were used to assure that the camera was not recognizing the
objects as flat in the workspace and so that the robot would
try and pick up the object at the right height. For the final
challenge portion of the lab, a MATLAB script was created
that determined the object’s position, uses inverse kinematics
to calculate the required joint angles of the end effector, uses
trajectory planning for a smooth motion, closed the robot
gripper, picked up the object, moved it to a different position
then where it was picked up, and dropped the ball off at the
new position. In addition to the challenge, real-time object
tracking was implemented so that the robot would be able
to follow an object around the workspace until the object
left the workspace and was no longer detected. Although the
lab called for the use of spherical objects, other objects were
used in this lab such as a rubber duck and colored dice.

II. METHODOLOGY

A. Basic Joint Control

In the first lab, we wrote five methods to be used in
later assignments. servo jp, a method to move the arm to
a given position. Following, we constructed interpolate jp,
which would achieve the same goals of the previous method,

however it would use interpolation instead to allow for more
control. Next, we constructed measured js, which would
display position and velocity data of the arm joints when
requested, which we could use for debugging purposes.
The fourth function setpoint js was designed to show the
intermediate goal points the servos were using at any given
time. Finally, goal js would allow us to see the final goal
point for the servo arms at the current moment.

We Tested servo jp and interpolate jp against each other
by moving the robot through a set of waypoints three times
each. the robot was then made to move to four arbitrary
poses, again one with and one without interpolation. The
results were then compared to measure the effectiveness of
each approach. Moving forward we opted to use interpo-
late jp extensively for more control over basic joint motion
within more complex functions.

B. Forward Kinematics

We calculated the Forward Kinematics of the 4 DOF
Robot by using the Denavit-Hartenberg (DH) convention.
We implemented a table of the DH parameters on MATLAB
from the base frame of the robot to the end effector over
four joints. We created a method to find the symbolic 4x4
homogeneous transformation matrix for each row called
dh2mat().

Once all the transformation matrices were constructed,
they are fed into dh2fk(), a method we made to represent
the transformation from the robot’s base frame to the end
effector frame by multiplying all the intermediate frames
together. Using the symbolic transformation matrix, we could
read current joint angles to solve for current position and
orientation of the robot’s end effector, which we achieved in
the fk3001() method.

We constructed a 3-D stick plot of the Robot arm using
the prevoius methods. Thus allowing us to monitor each
frame’s pose in real time. To provide more information for
debugging purposes we wrote three methods: setpoint cp(),
goal cp(), and measured cp(). These three methods fulfil the
same function as their counterparts from Basic Joint control,
however display a homogeneous transformation matrix from
the base frame to the end effector.

Our experimentation entailed moving the robot away from
the home position and back multipole times for error check-
ing. We coded a plot arm() method to facilitate the live 3
D stick model of the arm. We included the representation of
unit vectors of each frame to show orientation. We then wrote
MATLAB script for the robot to move along a triangular path
to observe the live plot.



C. Inverse Kinematics

Our third objective was to develop trajectory planning
via inverse kinematics of the 4 DOF Robot. We derived
equations correlating end effector position and orientation
with the four joint parameters. The inverse kinematic solution
would be fed to the robot to execute movements in task
space.

During testing, the Robot was made to trace a triangular
path along the task space of the robot. During this testing
we recorded joint space and task space transformations. We
wrote the method ik3001() to help command the robot to
move to different positions in task space given a desired end
effector position.

We implemented cubic and quintic trajectory planning
methods to further control robot movements. The cubic traj()
method plans trajectory given start and ending velocities
position and time. The second method, quintic traj(), utilizes
start and ending accelerations in conjunction with prior
parameters.

To test trajectory planning we created the run trajectory()
function, to combine the inverse kinematic method and tra-
jectory planning methods. Both cubic and quintic trajectories
were tested by passing three poses for the robot to loop
through. The series of tests run with quintic trajectories were
placed into a separate method called quintic traj(), which we
used going into the final project for trajectory planning.

D. Velocity Kinematics

In this lab, we implemented velocity kinematics for a robot
arm by calculating the 6x4 manipulator Jacobian matrix. We
used the partial derivative approach to find the upper half
(3x3) of the Jacobian matrix and created a MATLAB method
called ’jacob3001(q)’ to calculate and validate it. To test the
Jacobian matrix, we input a 4x1 vector to move the robot arm
to a singularity configuration, to check the first column of the
Jacobian and that its determinant was close to zero. For for-
ward velocity kinematics, we used the ’fdk3001()’ function,
which solved the p = J(q)q equation in real-time, taking joint
angles and instantaneous velocities as inputs to return task-
space linear and angular velocities. Real-time visualization
was achieved by plotting a stick model of the arm following
a quintic trajectory drawn by moving the robot to specific
triangle vertices. We also implemented an emergency stop
and safety check by recording the determinants of the 3x3
Jacobian submatrix. If the determinant values approached
zero or became too close, meaning the arm was approaching
a singularity, the code displayed an error message on the live
plot and stopped the robot’s motion.

E. Final Project

In this lab, we combined everything we learned and
already implemented this term to create an automatic robotic
picking up and sorting system. To complete this task we
first had to set up and calibrate the camera (using intrinsic
calibration) to detect and define the field we would be
working in. The next step was to register the camera-
to-robot connection using extrinsic calibration. To register

TABLE I
DH PARAMETER TABLE

θ d a α
T 2
1 θ1 L0 + L1 0 -90

T 3
2 θ2 − ϕ 0 L2 0

T 4
3 θ3 + ϕ 0 L3 0

T ee
4 θ4 0 L4 0

the connection between the camera and robot, we had to
register the reference frame of the robot and the reference
frame of the generated image from the camera, which was
used to relate the position of the objects and the task
space coordinates. For the object detection and classification
section, image processing was used to determine the image
processing pipeline that uses the image to find the centroid
of the spherical object (using the radius) and then draws
a circle of the color of the object on the camera feed. We
implemented color recognition by using the HSV color space
and created color masks for each of the colors we used (red,
green, yellow, orange, and purple). In order for the robot
to pick up the ball, we had to convert the centroid location
of the objects into target positions that the robot can use.
We also had to use the pointsToWorld() function so that the
objects didn’t project as flat objects in the workspace.

For the final project challenge itself, we created a MAT-
LAB script that determined the 3D position of an object
with respect to the robot’s reference frame, used inverse
kinematics from previous labs to calculate the joint angles
required for the robot’s end effector to reach the object’s
location, Use trajectory planning to implement a smooth
motion from the robot’s current position to the location of
the object by moving the robot to a position above the object
and then lowered straight down, then close the robot gripper,
picked up the object, moved it to a different position then
where it was picked up, and dropped the ball off at the
new position. The robot then sorted the objects by color to
arbitrary positions. The system would run until there were
no more objects left to detect in the workspace. We also
completed the implementation of real-time object tracking,
where the robot would be able to follow an object that was
being moved around the workspace, and would run until the
object was no longer detected in the workspace. Lastly, we
added a purple color mask so that the robot can detect and
sort purple dice as our choice object (the robot was also able
to detect and sort a yellow rubber duck).

III. RESULTS

The first thing we needed to derive for our robot arm
was the Forward Kinematics solution. We did this using the
Denavit-Hartenberg (DH) Method, as shown below.

Now that we have our DH Table, deriving our final
Forward Kinematics solution is pretty simple. For a given
row of the DH Table, the transformation matrix can be found



Fig. 1. The DH Frames for the Robotic Arm

like this:

T i+1
i =


cosθi −sinθicosαi sinθisinαi acosθi
sinθi cosθicosαi −cosθisinαi asinθi
0 sinαi cosαi di
0 0 0 1


(1)

Once we have that, getting the final transformation matrix
for our arm was as simple as multiplying them all together.

T ee
0 =

4∏
i=0

T i+1
i (2)

In the end, we were left with this:

Ree
0 =

 c1234+c234−1

2 − s1234+s234−1

2 −s1
s1234−s234−1

2
c1234−c234−1

2 c1
−s234 −c234 0



Pee
0 =


(L2 ∗ cϕ1−2 + L2 ∗ c12−ϕ + L3 ∗ c23−1+

L4 ∗ c1234 + L4 ∗ c234−1 + L3 ∗ c123)/2
(L2 ∗ sϕ1−2 + L2 ∗ s12−ϕ − L3 ∗ s23−1+

L4 ∗ s1234 − L4 ∗ s234−1 + L3 ∗ s123)/2
L0 + L1 − L3 ∗ s23 + L2 ∗ sϕ−2 − L4 ∗ s234

 (3)

The next thing we had to do was start working on our
Inverse Kinematics. We used the geometric approach for
deriving it, and our diagrams can be seen below.

Using the diagrams we derived the following equations for
Geometric inverse kinematics. Starting with deriving for θ1
with the following equations from the diagrams:

re =
√
eePosition(1)2 + eePosition(2)2 (4)

cos θ1 = eePosition(1)/Re (5)

r4 = re − L4 cos eePosition(4) (6)

θ1 = atan2(±
√
1− cos θ1

2, cos θ1) (7)

The angle θ1 can be derived independently from the other
three joint angles, as seen in Figure 2. The Next series of

Fig. 2. 3D Drawing of the robotic arm

Fig. 3. 2D Drawing of the robotic arm

equations are used to solve for the two linked angles, θ2 and
θ3. Below are the calculations relevant for θ2:

s = re + L4 sin eePosition(4)− L1 (8)

C =
√
r24 + s2 (9)

L2Offset = atan2(24, 128) (10)

θ2 = 90− gToT4 − β − L2Offset (11)

Below are the relevant calculations for θ3:

cos gToJ4 = r4/s (12)

gToJ4 = atan2(±
√
1− cos gToJ4

2, cos gToJ4) (13)

cosβ =
L2
2 + C2 − L2

3

2L2C
(14)

β = atan2(±
√

1− cosβ2, cosβ) (15)

cos J2toJ4 =
L2
2 − C2 + L2

3

2L2L3
(16)

J2toT4 = atan2(±
√
1− cos J2toT4

2, cos J2toT4) (17)

θ3 = 90− J2toJ3 + ϕ (18)

From Figure 3, the mathematical relationsips for both of
these angles are derived. Once θ2 and θ3 are known, the final



angle θ4 is found as the difference of the previous two joint
angles and the desired end effector orientation:

θ4 = eePosition(4)− θ2 − θ3 (19)

We calculated the Jacobian matrix by using the time
derivative method. where we took the translation component
of the full transformation matrix and derivated with respect
to each joint variable. Below are the translation column of
the final transformation matrix and the column wise results
of the derivation:

P ee
0 =

 C1 ∗ 620C23 +
667
5 C234 + 8 ∗

√
265 sin (θ2 + ϕ)

S1 ∗ 620C23 +
667
5 C234 + 8 ∗

√
265 sin (θ2 + ϕ)

96.326− 667
5 S234 − 8 ∗

√
265 sin(θ2 + phi)− 124S23


(20)

Jp1 =

−S1 ∗ 620C23 +
667
5 C234 + 8

√
265 sin (θ2 + ϕ)

C1 ∗ 620C23 +
667
5 C234 + 8

√
265 sin (θ2 + ϕ)

0


(21)

Jp2 =

−C1 ∗ 620S23 + 667C234 − 8
√
265 cos (θ2 + ϕ)

−S1 ∗ 620S23 + 667C234 + 8
√
265 sin (θ2 + ϕ)

−124C23 − 667
5 C234 − 8

√
265 cos (θ2 + ϕ)


(22)

Jp3 =

−C1 ∗ 620S23 +
667
5 S234

−S1 ∗ 620S23 +
667
5 S234

124C23 − 667
5 C234


(23)

Jp4 =

− 667
5 C1S234

− 667
5 S1S234

− 667
5 C234


(24)

The bottom part of the Jacobian can be determined from
the z rotation component of the Transformation matrix T i

0,
with i being the frame of the joint being solved for. The
rotation component of the Jacobean for our robot is the
following:

Fig. 4. Image after red mask is applied

Fig. 5. Image showing proper color recognition

Jo =

0 0 0 0
0 1 1 1
1 0 0 0

 (25)

Now that we have our derivations, we could get on with
the actual requirements for the final project. After calibrating,
our next step was to create and apply our color masks. Using
Matlab’s ColorThresholder tool, we created masks in the
HSV color space. With those, we were able to isolate colors
into black and white images (Fig 4) and use the regionprops
function to extract centroid and diameter data for objects that
passed the mask. We then draw the centroid and circle onto
the original image for later reference (Fig 5)

From there, we ran a quick check to make sure we didn’t
continue processing data for objects with diameters too small
to be our targets. We assume than any objects we are still
seeing are one of our ball targets, and convert the pixel
centroid position into real world coordinates, and then adjust
the exact position to account for the angle projection from
the camera (Fig 6)

Fig. 6. Side view of camera looking down at the ball



Fig. 7. Arm in snapshot position

Fig. 8. Robot arm during live tracking

SB =
S ∗ (h− r)

h

θC−>B = atan2(YC − YB , XC −XB)

(XB , YB) = (XC − SB ∗ cosθC−>B , SB ∗ sinθC−>B)(26)

Once we adjust our ball positions, we then do a final check
to make sure that the ball is in a place we can grab it. In
our case, this took the form of us taking the known world
coordinates of the corners of our field, and removing any
targets whose centroids were outside of our checkerboard
field.

That is all of our theoretical math, so the next step was to
figure out what our exact procedure would be for the final
project. What we decided on is as follows:

1) Move the arm out of the way, to some predefined
location (Fig 7)

2) Take a picture with the camera, mask, and locate
targets

3) Choose a random target of a random color. If no balls
are found, return to step 1.

4) Use quintic interpolation in joint space to move the
end effector above the ball

5) Lower the end effector onto the ball using quintic
interpolation

6) Close the gripper
7) Raise the end effector with the newly collected ball
8) Use quintic interpolation in joint space to move the

arm to a predetermined position based on the target’s
color

9) Lower the arm, and open the gripper to release the ball
10) Repeat until program is exited.

For live tracking, our procedure was only modified a little:

1) Take a picture with the camera, mask, and locate
targets

2) Choose a valid target to follow
3) Use interpolate jp to move above the target
4) Repeat

IV. DISCUSSION

A. Calibration and Image Processing

Through the course of programming the 4 DOF arm robot
to link up to the camera we needed to run calibrations for
the camera used. The fish eye lens distorts the images taken
with the camera, so the distortion is corrected using the built
in camera calibrator from the Matlab extension for image
processing tools. We chose a position to move the robot out
of the way of the camera to let it calibrate upon startup.

When finding calibration parameters for the camera, we
needed to take multiple pictures of the workspace from the
camera in different orientations. As part of this process, we
pruned a sizeable collection of these images, such that the
image re-projection error was less than 1 pixel. Beyond this,
we had a few errors in our initial calibrations, warranting
further modifications to the code. Primarily, the calibrator
detected another two columns of checkerboard vertices on
either side of the real board, which needed to be filtered out.

Using the image processing tools, the images can be
masked to isolate a specific groupings of pixels by color
values. Our team used the HSV color model to better account
for changes in the light conditions of the lab. The color space
proved to be very robust under most conditions. However
had trouble discerning certain colors from certain lighting
conditions, such as blue and purple, which we used for
the additional random objects (Subsection D). When these
colors are searched for, the program sometimes mistakenly
recognizes shadows over the black checkerboard pattern as
objects.

The masked image is then used to identify the centroid of
the target object, as well as it’s approximate radius in pixels.
To avoid mistaking small groupings of pixels as an object,
the dimensions of the potential object are filtered based
on a minimum radius. Through the use of forward/inverse
kinematics, the base frame of the robot is linked to the base
frame of its workspace and the position of the camera.

To account for the offset of the raw camera object lo-
cations, mathematics using similar triangles is applied to
determine the actual position from the object’s radius and
centroid position. When testing the code to move the gripper
to the arm, the raw value caused enough overshoot to have
the end effector miss the target entirely.

B. Automated Object Sorting

We utilized a while loop to repeat the sequences of
methods used throughout the process. Joint space interpo-
lation was implemented for our arm instead of task space
interpolation since the movements of the later method were
not as fluid as we would have desired. We also utilized
quintic trajectory planning to allow for more control over
arm movements and remove the abrupt stops from the raw



interpolation. using interpolation only could cause the object
to move out of the way accidentally before the end effector
can grabbing it. The color of the object to be removed is
chosen at random. We programmed color recognition for
green, red, orange, yellow, and gray, although not all of
these colors are required. Blue and purple filters were also
generated, but are not used due to the detection errors found
in initial image processing.

Once our gripper is in position, we would lower the open
gripper gently to the target object and call a close gripper
method provided by the given lab code. The arm would then
raise and move to a designated dropping zone for each of
the colored objects off to the side of the workspace. To
prevent our robot from recognizing objects already outside
of the workspace, the program would additionally filter out
any objects sensed outside of the workspace, defined by its
corners in pixel coordinates of the image.

After the ball is dropped into the designated dumb zone,
which we predefined in a matrix of task space coordinates,
the loop would repeat until no objects are detected on the
workspace. Since the loop randomly selects a color to scan
for, it is possible for there to be a loop in our code where
the Robot does not sense an object on the board, thus our
program loops until it picks a color of which there is an
object to be removed from the workspace. As part of the
loop, we have the robot arm return to the calibration position
before moving to the next object in the loop.

C. Live tracking

Afterwards, to implementation the live tracking of a mov-
ing object, we constructed a separate loop, with a simplified
work load, in which the gripper maintains a set distance
above an object, which we set to 100mm. once the arm has
completed this movement, the program loops and repeats
the process. We utilized raw interpolation to make these
movements instead of quintic trajectory planning. Due to the
non-blocking nature of raw interpolation, our robot arm can
make quick course corrections mid trajectory. In this regard,
we prioritized the reaction time of our robot over the fluidity
of its movements.

We determined it would be problematic if the robot
randomly choose which color to scan for each loop, while
also desiring a robust code that can work under multiple
conditions. Hence, the first color recognized, of the list we
prepared, which is present on the board is the object the
robot will choose to follow.

D. Additional Random Objects

To account for additional random objects, our code needed
only slight modifications to recognize and sort objects out of
the scope of the initial parameters of the project. We noticed
some objects we placed on the board were large enough to
be recognized as objects, but too small to be grabbed by
the gripper. Conversely, we also placed an object which did
not allow the gripper to close completely, which we believe
caused an error in our Open gripper method.

TABLE II
APPENDIX: FINAL PROJECT CONTRIBUTIONS

Section Members Contributed
Planning Kevin Siegall, Melissa Kelly
Coding Kevin Siegall

Experimenting Kevin Siegall, Melissa Kelly
Analyzing Results All

Write Up All
Creating Video None

Paper Members Contributed
Abstract Melissa Kelly

Introduction Melissa Kelly
Methodology Melissa Kelly, Robert Gunduz
Derivations Kevin Siegall

Results Kevin Siegall
Discussion Robert Gunduz
Conclusion Robert Gunduz

Excluding edge cases, depending on the color of the
random object placed on the board, the Automated Object
sorting loop might be able to remove the object without mod-
ification. Due to the abstractions we made in our calculations
beforehand, we were able to account for varying object image
offsets.

While testing, we used purple objects to test alternative
HSV filters. While many trials ended with successful object
sorting, there were still minor instances of the filter detecting
non existent objects.

E. CONCLUSION

Using the methods we built from previous labs, we suc-
cessfully managed to make the robot execute a complex
series of task. Camera calibration was utilized to properly
calibrate the mounted camera to the given workspace. Im-
age processing allowed us to identify the objects on the
task space through masking the object’s color. The various
movement methods we constructed up to this point moved
the arm across the work space in deliberate manner. Our
robot is capable of clearing and sorting the objects from
the workspace. Furthermore, the robot was able to closely
follow a moving object across the workspace and remove odd
objects. With this, we have demonstrated a comprehensive
understanding of the course material, which we will use
utilize greatly in our careers moving forward.

APPENDIX A: GITHUB RELEASE LINK

This term we worked using Github for version control.
Our final code release can be found here, or using the link
below:
https://github.com/RBE3001-A23/RBE3001_

A23_Team18/releases/tag/Lab_5

ACKNOWLEDGMENT

Praise the SAs, they are the best.
The graders too (hi Kalina!)

https://github.com/RBE3001-A23/RBE3001_A23_Team18/releases/tag/Lab_5
https://github.com/RBE3001-A23/RBE3001_A23_Team18/releases/tag/Lab_5
https://github.com/RBE3001-A23/RBE3001_A23_Team18/releases/tag/Lab_5

	INTRODUCTION
	METHODOLOGY
	Basic Joint Control
	Forward Kinematics
	Inverse Kinematics
	Velocity Kinematics
	Final Project

	RESULTS
	DISCUSSION
	Calibration and Image Processing
	Automated Object Sorting
	Live tracking
	Additional Random Objects
	CONCLUSION


