
HW 2: Dramatic Data
Zephyr Conley Kay Siegall Myrrh Khan

Abstract—This paper overviews the implementation of a con-
volutional neural network with a Unet architecture for the
identification of drone racing gates. The network was trained
and tested on a dataset artificially generated from blender
and augmented using Python’s torchvision.transforms library.
Additionally, the network was able to reach an accuracy of 95%
on the testing sample and was able to track gates in a video that
was not a part of the dataset.

I. INTRODUCTION

One extremely common application of neural networks is
using them in computer vision to classify certain objects. This
process is used in self-driving cars, drone obstacle avoidance,
cancer diagnoses, and other real-world applications.

However, one big obstacle when training neural networks
is how much data is needed to learn effectively. For every n
neurons a network contains, the network requires 10n images.

Creating a dataset that is both large enough to effectively
train the network and also contains all possible edge cases
is arduous and expensive. For example, planes are sometimes
guided to highways for emergency landings if there are no
close airports. A human driver can understand that a plane is
an obstacle that must be avoided, even if they have never seen
that event before, but a self-driving car’s deep learning models
may need prior data, such as images of planes on a highway,
to respond to this situation. It is expensive and dangerous to
gather real-life footage of many such edge cases, so a dataset
of simulated images can be used instead.

However, simulating millions of images one by one is both a
labor and time intensive process. To simplify this, the process
of data augmentation can be used to turn a substantially
smaller dataset into one of acceptable size. As a dataset is
generated, random parts of the image, such as the background
can be changed in a variety of ways. This process is known
as domain randomization, allowing the model to adapt any
unforeseen edge cases. The lighting, clarity, and orientation of
the image can also be altered during and after the generation
of the images to further augment the dataset. Lastly, a dataset
can be further augmented by applying random homographic
transformations, such as color jittering, noise, or blurring to
increase the randomness of the dataset without generating
more images.

II. GENERATING AND AUGMENTING THE DATASET

Our team used a rendering software called Blender to gener-
ate 3D scenes. Blender contains a built-in Python interpreter
and API, allowing users to write scripts to manipulate and
export scenes. We set up a scene with multiple windows on
a black background. Our image_generation.py script

Fig. 1. A screenshot of our Blender UI, showing both a rendered image, and
the Compositing steps taken to get the labels.

Fig. 2. Render output from Blender, prior to any homographic transformations

would randomly move windows, import backgrounds, adjust
lighting, and change the camera position within the scene five
thousand times, exporting the scene to an image after each
iteration.

We used our image_augmentation.py script to import
the images and apply various transformations onto them,
expanding our dataset size to fifty thousand images. Trans-
formations included rotation, resizing, blurring, adding noise,
adding color jitter, inversion, and simulating the image being
put under water.

III. IMPLEMENTING A CUSTOM CONVOLUTIONAL
NEURAL NETWORK

We decided to use the U-Net architecture for our model,
which consists of an encoder to extract image features and a
decoder to create a mask out of these features. In our specific



Fig. 3. Label output from Blender, corresponding to Fig. 2

Fig. 4. Example of an image with multiple transformations being applied as
part of the augmenting process

case, the model should predict the location of the windows
in an image. The output labels were a mask of the original
image, where the window targets are white and the rest of the
image is black, as seen in Fig. 5.

With U-Net’s encoder-decoder architecture, we have four
encoder steps, four decoder steps, and a bottom step linking the
two. These steps consist of a small pattern that repeats twice,
as well as either an Upsample or MaxPool2D step. This pattern
consists of convolution layer (which was padded so that it did
not change the size of the image), a batch normalization layer
to normalize the inputs, and a ReLU activation layer (which
converts all negative input values to zero but keeps other input
values the same). The batch normalization layers prevent the

Fig. 5. Three images: Left is our model’s prediction. Middle is the label, and
Right is the input, in gray-scale

Fig. 6. UNet architecture [1]

input values from being too big, preventing the output from
growing to infinity.

Each encoder layer splits up the image into smaller pieces,
the first of which are usually called feature layers. Each en-
coder layer is the pattern we described earlier, twice, followed
by a MaxPool2D step. The MaxPool2D layer is what actually
decreases the image size, using (in our case), a kernel size of
5, a stride of 2, and a padding of 2. During our encoder steps,
we gradually decrease the size of our kernel, starting at 11,
then decreasing to 7, 5, and finally 3, where it remains for the
rest of our Conv2d layers.

Each decoder layer combines these features back into a
larger image. Each decoder step is an Upsample layer, which
actually does the combining, followed by the same pattern
mentioned twice already. Separating the encoder+decoder lay-
ers is a bottom step, which is just the same pattern we’ve
mentioned thrice.

Most U-Net architectures contain skip connections, which
preserve the outputs of previous encoder layers and add them
to the corresponding decoder layers, thereby preventing the
gradients from reaching zero and freezing progress within the
neural network. We initially wrote our network intending to
add skip connections later, but when we trained our network,
we found that its accuracy was sufficient. Given the amount
of time to retrain our models, we decided to forgo the skip
connections and stick with our current structure.

In training this model, we utilized Binary Cross Entropy
Loss (BCELoss), which uses the log of the model output, along
with the label, to determine the loss. BCELoss is a common
solution for binary classification, which matches our use case.
For training, we utilized ADAM with a learning rate of 1e-̂4.

IV. RESULTS

We trained with batches of eight images for 24 hours,
totaling around 433,000 batches and 69 epochs. At around
100,000 batches and 15 epochs, our model settled around a
5% training loss, only improving to 4% in subsequent batches.
However, at this step we realized that within our dataset, we
made the windows too small, such that it did not accurately
reflect the video we were to test against. We needed to
regenerate our 5k renders from Blender with a larger scale for
the windows, then retrain for another 8 hours, totalling 140,000



Fig. 7. Loss per batch during training.

Fig. 8. Training loss over number of batches

batches and 21 epochs. We processed the final video using the
model after 21 epochs, at a loss of 12.0% (or 88.0% accuracy).
We also tested with partially trained models, using epoch 3
(38.5% loss) and epoch 13 (12.8% loss) for comparison, but
the later model was either equal or better on every frame, so
we kept the newer model. A video of this comparison can be
found here.

The model’s training loss is seen in Fig. 8. At the beginning,
the model improves drastically, but once it hits about 40k
batches (only 6 epochs), the model barely improves at all. By
batch 100k (epoch 15), the validation loss had only improved
9%, from 23% loss at batch 40k to a 14% loss at 100k.

After retraining our model to perform better, it did quite well
on the final video. However, we once again did not account
for exactly how large the window gets in the video, and it
once again was not reflected properly in the dataset. As such,
that part of the video is lacking in clarity compared to the rest.
You can find our final model’s parameters here, and our final
video can be found here.

V. CONCLUSION

Overall, this process taught us valuable skills in image
generation, dataset augmentation, and implementing more
sophisticated machine learning architectures. One mistake we
made that we would do differently next time, was not checking
the video before generating our dataset. In the final video
that we tested our dataset against, the windows were much
closer, took up much more of the screen, and were sometimes

cut off by the edge of the frame. In contrast, the dataset we
trained our algorithm on had much smaller windows, often
showcased these windows at a much sharper angle, and rarely
had windows that were cut off by the edge of the frame. If
we had accounted for these attributes in our dataset, we may
have had more success when testing it. Despite this, we were
still able to achieve an accuracy of 88.0% for our test dataset
and adequately track the frames in the test video.

REFERENCES

[1] Aditya Taparia. U-net architecture explained. https://www.geeksforgeeks.
org/u-net-architecture-explained/, June 2023.

https://wpi0-my.sharepoint.com/:v:/g/personal/zlconley_wpi_edu/EQiLClutPnRMpiw6n7E8bZMBQwcL-6LMh_cGMZUEqVfvpg?e=QRMiBJ
https://wpi0-my.sharepoint.com/:u:/g/personal/krsiegall_wpi_edu/ESGI3r6eF0ROkkr56kvHaS4BB4Pd8VieIuzLm4a38JvMIA?e=hNGXcC
https://wpi0-my.sharepoint.com/:v:/g/personal/krsiegall_wpi_edu/Ee-KJYO1pD1NkUd4kWZrJ7QBFzDKN3mNN_k3KS6ItsrVag?e=pAE1II&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://www.geeksforgeeks.org/u-net-architecture-explained/
https://www.geeksforgeeks.org/u-net-architecture-explained/

	Introduction
	Generating and Augmenting the Dataset
	Implementing a Custom Convolutional Neural Network
	Results
	Conclusion
	References

